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UNIFORM AIRY-TYPE EXPANSIONS OF INTEGRALS*
A. B. OLDE DAALHUISt anp N. M. TEMME?

Abstract. A new method for representing the remainder and coefficients in Airy-type expan-
sions of integrals is given. The quantities are written in terms of Cauchy-type integrals and are
natural generalizations of integral representations of Taylor coefficients and remainders of analytic
functions. The new approach gives a general method for extending the domain of the saddle-point
parameter to unbounded domains. As a side result the conditions under which the Airy-type asymp-
totic expansion has a double asymptotic property become clear. An example relating to Laguerre
polynomials is worked out in detail. How to apply the method to other types of uniform expansions,
for example, to an expansion with Bessel functions as approximants, is explained. In this case the
domain of validity can be extended to unbounded domains and the double asymptotic property can
be established as well.

Key words. uniform asymptotic expansions of integrals, Airy approximation, Bessel function,
Laguerre polynomial, Bessel approximation
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1. Introduction. Many problems in mathematical physics and special functions
lead to integral representations of the form

(L) F(z,0) = [ efeag(z)ds,
C

where C is a contour in the complex plane, z is a large parameter, and f and g are
analytic functions on a neighborhood of C. In Airy-type expansions f depends on
a parameter a, the saddle-point parameter, that describes the location of the saddle
points. For a critical value of a, say, & = 0, two saddle points coalesce with each
other. With the cubic transformation z — w, given by

(1.2) flz,@) = jwd ~Pw+c

and suggested by Chester, Friedman, and Ursell [3], an asymptotic expansion for large
values of z in terms of Airy functions can be obtained, this expansion being uniformly
valid with respect to a as « ranges over a connected set containing the critical value 0
in its interior. The parameters b and c are determined explicitly from the requirement
that the transformation (1.2) is analytic on a neighborhood of the two saddle points.
Transformation (1.2) yields the standard form

1
(13) % A ez(%ws—bnw)ho(w)dw’
where

ho(w) = g(m(w))g?u.
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The phase function has two saddle points at w = +b. In the transformed integral (1.3)
we call b the saddle-point parameter. The integral (1.3) has a turning-point character:
the behavior changes strongly when b varies from real to imaginary values. When
b =0, the saddle points coalesce at w = 0.

The method for obtaining the Airy-type expansion, based on an integration-by-
parts method, is introduced for a different class of integrals in Bleistein [1]. It is
described for the Airy case in Bleistein and Handelsman [2, §9.2], in Olver [10, §§9.12,
9.13], and in Wong [19, §7.5].

The purpose of the paper is to present a new method for representing the remain-
der (and the coefficients) in Airy-type expansions. Two new aspects with respect to
the saddle-point parameter are introduced in this way.

(i) A general method is described for extending the domain of this parameter to
unbounded domains, by taking into account the singularities of the integrand function
(especially the distance between the singularities and the relevant saddle point). The
extension is possible since the order estimates of the remainder include information
on the behavior of the remainder as the saddle-point parameter tends to infinity.

(ii) The method clearly describes the condition needed for the double asymptotic
property of the expansion. That is, under certain conditions, the roles of the large
parameter and the saddle-point parameter may be interchanged in describing the
asymptotic phenomena. For instance, our analysis shows that the Airy-type expansion
of the Laguerre polynomials given in [7] does not have the double asymptotic property,
although the domain of uniform validity is indeed unbounded, as is claimed in [7].

Our method is based on a new class of rational functions with which the re-
mainders in the expansions can be represented in a manner that is analogous to the
representation of the remainder in the Taylor series of an analytic function. The ra-
tional functions do not depend on the integrand function and can be used as a general
tool in treating uniform Airy-type expansions. The method is mainly of theoretical
interest and delivers only order estimates for the remainders. In §8 we describe a
method for obtaining strict error bounds for remainders of Airy-type expansions.

Our methods are not restricted to Airy-type expansions. In §7 we consider some
other types of uniform expansions. In particular, a uniform expansion in terms of
Bessel functions is considered. In this case the extension of the domain can be ob-
tained, as can the double asymptotic property.

2. Related and earlier results. Airy-type expansions occur in the asymp-
totic theory of differential equations, for instance in turning-point problems; see [10,
chap. 11]. In this case the estimation of remainders in terms of realistic and strict
error bounds is well developed. Moreover, Olver extended the domains of the large pa-
rameter and the analogue of the saddle-point parameter to large areas in the complex
plane.

The situation for integrals is quite different. Although the uniform Airy-type
expansions have been extensively studied, a general theory for obtaining computable
strict and realistic error bounds is still missing. This problem is more difficult than that
for the case of differential equations. In transforming a given integral to a standard
form by means of a mapping £ — w as in (1.2), a mapping a — b is implicitly
introduced. Because of these two mappings, the function ho(w) in (1.3) may be difficult
to handle. In corresponding problems in differential equations only the mapping o —
b (or a related one) has to be considered. Another point is that in the theory of
differential equations several techniques for bounding the remainders exist, but these
techniques cannot be translated to the treatment of remainders of expansions obtained
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through integrals. An example is Olver’s method that is based on bounding the
remainders by using Volterra integral equations.

In [3] the analytical properties of the mapping (1.2) are considered locally around
the relevant saddle points; in Friedman [8] another proof is given. Levinson [9] gives
a fundamental mapping theorem that generalizes the mapping (1.2) considerably; see
also [19, §7.6]. In Qu and Wong [11] an iterative method is used for proving the local
analytic property of mappings that are more complicated than those defined by (1.2)
(there is a pole in the neighborhood of the coalescing saddle points). The transfor-
mation (1.2) is discussed in terms of conformal mappings on unbounded domains for
special cases; for instance, in Copson [4] for an integral defining the Bessel function
Ju(2), in [10] for the Anger function (a function related to the Bessel function), and
in [7] for integrals defining the Laguerre polynomials.

Recent examples of the construction of strict bounds in uniform asymptotic ex-
pansions of integrals are presented in Shivakumar and Wong [12] and in Frenzen [5]
for Legendre-function expansions and in Frenzen and Wong (6] for Jacobi polynomials.
The expansions are not of the compound type that follows from the Bleistein method,
and a restricted number of terms in the expansions are considered. Another approach
is given in Ursell [17] for Legendre functions, where uniform bounds are obtained by
applying the maximum-modulus theorem. Ursell’s method does not give sharp com-
putable estimates of the remainders, and extension of the bounded domain of z to
an unbounded domain is indicated without proof. In Ursell [18] the Airy-type expan-
sion is discussed by using the maximum-modulus principle for complex values of the
saddle-point parameter. The possibility of extending the validity to unbounded do-
mains is mentioned again. Earlier, in Ursell [16], the Airy-type expansion is compared
with the steepest-descent expansion, giving a continuation to unbounded domains.
Qualitative results are obtained for the coefficient functions and the remainders; the
Bleistein sequence is not used.

In the Anger function example in [10] the region of the saddle-point parameter
is extended to an unbounded real domain by giving order estimates of the remainder.
Olver’s technique is based on estimating remainders of Taylor series. The expansion
is not of the Bleistein type but is obtained by expanding the integrand function at a
saddle point inside the interval of integration. The analysis shows that the distance
between singular points of the integrand function and that saddle point plays a crucial
role, although the singularities are not mentioned explicitly.

In the treatment of Laguerre polynomials in [7] order estimates for the remainders
are also given, and there is a claim of uniform validity with respect to the saddle-point
parameter in an unbounded real domain. The claim does not follow from investigating
the singularities of the integrand function. In the present paper we take into account
the singularities, and we show that the claim is indeed correct.

Soni and Soni [14] give new representations of the coefficients and remainders of
Airy-type expansions; these representations are based on an expansion of the integrand
function in terms of a class of polynomials. The paper is a continuation of earlier
papers by Soni and Sleeman [13] and Soni and Temme [15]. The coefficients and
remainder are written as contour integrals of the integrand function and rational
functions related with the polynomials. New order estimates of the remainder have
been derived for a finite domain of the saddle-point parameter.

3. Uniform Airy-type expansion. Let

1
(3.1) F(z,b) = %Lez(%ws‘bzw)ho(w)dw,
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where hg(w) is an analytic function on a neighborhood of £, with £ a suitable contour
that begins at coexp(—3i) and ends at coexp(3mi). When b € [0,00) we take £ the
steepest-descent contour through b, which is given by L ={w =z +iy € C | y2 =
3x2 — 3b2} (see Fig. 3.1), such that Im(3w3 — b2w) = 0 and w3 — b2w attains its

maximum on £ at b.

F1G. 3.1. Steepest-descent curve £ when b € [0, 00).

When b € [0,i00) we take £ = {w = z + iy € C | 3yz2 = (y £ ib)2(y F 2ib)}, the
steepest-descent contour through +b (see Fig. 3.2).

L
IR

_Es::j

-b

F1G. 3.2. Steepest-descent curve L when b € [0,100).

It is not necessary to restrict our analysis to these contours of integration, but using
these steepest-descent contours makes the following calculations less complicated.

‘We use Bleistein’s method for obtaining an asymptotic expansion, defining g, (w),
hnyi(w), n=0,1,2,..., by writing

hn(w) = an + Brw + (w2 — b2)gn(w),
&2 1 (1) = - ga(w)
n+1 = dwgn )
with an, fn following from substitution of w = +b. If we use (3.2) in (3.1) and
integrate n times by parts, we obtain

n—1 n—1
(3:3) F(z,b) = Ai(22/302) Y _(—1)kakz—*-1/3—AY(22/382) Y " (~1)FBra—k~2/3+e,,
k=0 k=0

where

(3.4) en = (-1 /L A=t () dw
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and where Ai(z) is the Airy function and Ai’(z2) is its derivative. The functions hn(w)
share, by inheritance, the analytic properties of ho on the same neighborhood of L.

Estimates of |n|, for large values of z and for |b| bounded, given in the literature
are usually of the form

M, . -~ Nn = -~
(3.5) lenl < 75 &n (D) AL(2/30)| + 575 On (B) A (22/3p2)],

where M,, and N, depend on n and where o, En are related to the coefficients in
(3.2). Furthermore,

~ Ai (u) ifu>0,

Ai(w) = { [Ai?(u) + Bi® (u)]l/2 ifu<O,
(36) — Ai'(u) ifu>0,

Al = { [Ai2(u) + Bi2(w)] "/ ifu<0.

A proof of an estimate like (3.5) is given in (7], with

~ 1 if0<b<§, = J1 f0<b<§,
aﬂ(b)={|an| i£h> ¢, ﬂ"(b)‘{lﬂn| i£h> ¢,

where £ is a fixed positive number.

Notice that the influence of large |b| in (3.5) is not clear. We assume that the
function ho of (3.1) depends on the saddle-point parameter b. Usually this is a con-
sequence of the transformation to the standard form (3.1) by the mapping defined in
(1.2). Also, when ho does not depend on b, all functions h, obtained by recursion
from (3.2) do depend on b.

For bounded |b] an estimate like (3.5) holds for rather mild conditions on ho.
However, for obtaining uniformly valid estimates when b runs through an unbounded
interval, we need more information on hg. In the following sections we obtain estimates
of |hn(w)| by formulating conditions on ho on discs with centers +b. These discs have
radius p(b), which indeed may be a function of b.

For obtaining estimates of €, of (3.4) holding in unbounded b-intervals, we now
introduce a new class of rational functions.

4. Intermezzo: A new class of rational functions. We introduce a class of
rational functions that satisfy the following theorem.
THEOREM 4.1. Let
1
u—w’
-1

d
(4.1.b) Rnia(u,w,b) = P _b2du

(4.1.a) Ro(u,w,b) =
Ry (u,w,b), n=0,1,2,...,

where u,w,b € C, u # w, u? # b2. Let hn(w) be defined by the recursive scheme (3.2),
with ho(w) a given analytic function in a domain G. Then we have

(4.2) hn(w) = %/CR,,(u,w, b)ho(u)du,

where C is a simple closed contour in G that encircles the points w and +b.
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Proof.
hn(w) = L / Ro(u, w, b)hn(u)du = —l— / Ro(u,w, b)ign_l(u)du
2mi Je 27i Je du
= 2-711_2 /c Ry (u, w,b)hn—1(u)du — 5% /c Ri(u,w,b)(an-1 + Bn—1u)du

1
i ./c Ry (u, w,b)hn—1(u)du

=*

1
= %r—i/cRn(u,w,b)ho(u)du.

In * we use the fact that the rational function Ri(u,w,b)(an—1 + fr-1u) is O(u—2)
as |u| — oo and that all the poles of this function are inside C. Thus the integral
of this function along C vanishes (use the transformation u — u~1, which is well
defined at u = co and yields an integral with no singularities inside the contour of
integration). O

COROLLARY 4.2. Let An(u,b), Bn(u,b) be defined by the recursion in (4.1.b),
with initial velues

U 1
o A

(43) Ao (u7 b) =
Then for n =0,1,2,..., the coefficients an, On of (3.2) can be written as

@)  an=o- /c An(u,B)ho(w)dy,  Ba= % /c Bn(u, b)ho(u)du,

where C is a simple closed contour in G that encircles the points +b.

We observe that the rational functions defined by (4.1) are independent of the
function ho and that representation (4.2) can be considered as the analogue of the
Cauchy integral defining the remainder of a Taylor series. An estimate of hn, the
integrand function of (3.4), will be obtained as in Cauchy’s inequality for bounding
the coefficients of a Taylor series.

By induction with respect to n, it follows that R, has an expansion of the form

n—1kn,i

45)  Rafwuw,h)=3 % Cijut n=12,..,

(u, — w)n+1—i—j(u2 — b2)'n+i’

i=0 j=0

with kn; = min(¢,n — 1 — 2) and where C;; do not depend on u, w, and b.

We conclude this section by giving estimates for R, and for integrals of this
function; these can be proved easily with (4.5).

(i) Let w € C such that |w — b| = O(b) as b — oo, and let I' be a simple closed
contour that encircles b and w. Then forn =1,2,...,

(4.6) -2% /r Ro(u, w, b)du = O(b-t)

as b — oo.
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(i) Let b € C and Q(b) = {(u,w) € C? | [u —b| = p(b), |w — b| < 3p(b)}, such
that p(b) = O(|b|®) as b — oo, where —3 < 6 < 1. Then we can assign numbers A,
independent of b, such that

(4.7 sup  |Rn(u,w,b)| < An|b|-(1+20)n-6 a5 b — o0.
(u,w)€Q(d)

5. Extension of the domain of validity. In this section we prove that, under
certain circumstances, expansion (3.3) holds uniformly with respect to the saddle-point
parameter b in unbounded domains.

For defining the radius p(b) of the discs mentioned at the end of §3, we first define

(5.1) po(b) = min{|w + b| | w is a singularity of ho(w)}

and we assume that, for large |b|, we have po(b) > 8o|b|¢, where the constants & and 6
satisfy 6o >0, 0 > -—%. This is the essential assumption on hg(w) in the neighborhood
of the saddle points.

Now we take p(b) < po(b) such that p(b) ~ 6|b|® as b — oo, where the constant
5§ > 0. We take 8 < 1 as large as possible, and we drop the restriction 8 < 1 after
Theorem 5.2. Notice that we concentrate on estimates with |b| — oo and that we do
not give details for b in compacta.

Next we introduce upper bounds for the hn(w), n =0,1,2,.... Thus let

(5.2) hn = sup | (w)]-
|wb|<(1/2)p(b)

Notice that ho(w) is analytic on |w + b| < p(b); thus ho is finite.
For obtaining estimates of h, in terms of ho let I’ be a circle around +b with
radius p(b) and let |w F b < 3p(b). We require § < 1 to ensure that both saddle

points are not inside the circle I'. This is possible by choosing 6 appropriately. Then,
if we use (4.6), we have

b (1) = % / Ro(u, w, b)hn (w)du
r
1 1
=5 /r Ry (u,w,b)hn—1(u)du ~ -27r—i/FR1(u, w, b)(an-1 + Pr-1u)du

1 ~
—40 5 /r Ra(tt, w, B) 1 (1)t + Frn_1O(5-3)

1 ~ ~
= o /F (1, w, B)ho(w)dut + in_10(6=3) + - - - + FoO(b=5m)

as b — co. So by induction and (4.7) we have proved the following theorem.
THEOREM 5.1. Let hn, n = 0,1,2,..., be the upper bound of hn(w), defined in

(5.2). Then we have the estimate
(5.3) hn < Cnlb|=(+20)nhg  as b — oo,

where Cp, does not depend on b.

hat
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Now we shall prove that £, can be bounded as follows:
(5.4) len| < Ca(lb] + 1)—(1+29)n7wz-n—1/3"&'i(22/3b2),

with a slightly different C,, that does not depend on b and z.

In order to use the preceding estimates, we split up the contour £ into £’ and
L£". In the case that b € [0,00) we take L' = {w € £ | |w — b < 1p(b)}, and in the
case that b € [0,i00) we take L' = {w € L | |w £b| < $p(b)}. We define L = L — L’
and introduce the corresponding integrals:

Enlp = (— 1)"z""—1— e*(3v° =Y ()dw
27 J o
(5.5) i
el = (-1 "5~ e*(3w’ =) (4)dw.
LII

In the Appendix we formulate conditions on hg(w) such that when 6 > —11,- the
estimate of |ey ., | is exponentially small compared with the estimate of |, ,| as
z — oo uniformly with respect to b.

The proof of (5.4) for large b is divided into separate cases: (i) b € [0, 00) and (ii)
b € [0,i00). We first consider case (i). With (5.3) we have

lsn[ ,l < an—nlbl (1+29)'nh0._1._ ez(%—ws-—baw)dw
c omi J
< C"z_n_l/a|b|_(1+29)"hoA1(z2/3b2).

In case (ii) we write w = z + iy and we define £, = {y > 0 | there exists
z€R : z+iy € L'}. Simple transformations give

__1_ z(2wd—b?w) —
ot J, e*3 hn(w)dw =
——-1 - e—z(y+ib)2f(y)g(y)(e 320° hn (w) - e+szb3hn(w))
2mi c,
+ 51— e—z(y‘*‘ib)zf(y)(e"%zbs h,n(w) + e+§2bshn('ﬁ)'))dy,
™ Lf;.

where

fly) = 2(2y — )2 [y —2idb Y- 2zb ib(y + tb) 3y
y)= 9y 3y ’ 3y? y— 2zb

Note that the functions have real arguments and that g(y) > 0. Thus with (5.3) we

have
__:_l__/ ez(%wf’_bzw)hn(w)dw’
2me J o
1 )
< g [, eI+ g()) (hnw)| + [hn(@)])dy
cy

— o0
<o) Calb|= 420 Ro L [ ems 49210 1+ g(w))dy
0
1
\zb/i
~u /20 |b|~(1+20)m R ,~1/3A1(22/3b2),

< Chlbl“(”'z")"ﬁo
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as z — 0o. In * we have used the relation E(z) ~ m=1/2(—z)~1/4 as x — —o0; see
[10, p. 395].
In the Appendix we prove that

(5.6) Ienb” | < C”eﬁx(z—”)lblzsﬂﬁoz"""4/3E(z2/3b2),

where the positive Cp, A, and p do not depend on b and 2z and where |b] > ¢ > 0.
These estimates show that (5.4) is valid. Thus we have proved the following theorem.

THEOREM 5.2. Let F(z,b) be of the form (3.1), where ho(w) satisfies the condi-
tions mentioned in the beginning of this section and in the Appendiz. Then we have
(3.3) as a uniform asymptotic ezpansion for F(z,b), where (5.4) is an estimate for
len| as z — oo uniformly with respect to b € [0,00) U [0,i00) and where hg is given in
(5.2).

Now we drop the restriction § < 1. In the case that 8 > 1, the analysis that leads
to Theorem 5.2 is much easier; every time 1 + 26 occurs it can be replaced with the
larger factor 36.

Remark 1. With the conditions of Theorem 5.2 it follows that expansion (3.3) has
a double asymptotic property: the roles of b and z can be interchanged. The double
asymptotic property is lost in the example considered in §6.

Remark 2. An estimate like (5.4) has been derived in [10, p. 360] for a particular
example. There the estimate for the remainder of an expansion of the Anger function
A_, (vsech o) reads

enla,v) = (1 + £)-0n+)y=3+1Qi, (b3 6)0(1),

where Qin(z) is a special function, §-§3/ 2 = @ ~tanha, and 0 = —%. This estimate
bolds as v — oo uniformly with respect to a € [0,00) or £ € [0,00). Indeed, the value
6= —% is related to the distance between the relevant saddle point and the nearest
singularities of the integrand function, which is of order £-1/4 as £ — oo.

6. Laguerre polynomials: A boundary case. In this section we show that,
in certain circumstances, the condition 6 > —-% of Theorem 5.2 can be replaced with
6 = —%. We demonstrate this feature by considering a recent expansion for the
Laguerre polynomials.

First we summarize the main steps for obtaining an Airy-type expansion of the
Laguerre polynomials. More details are given in [7] and [19]. Laguerre polynomials
have the following integral representation:

1 a+) ot
(6.1) (——1)N2°e‘z‘/2Lg\7)(zt) = exf(=:t)(1 — 22) %5~ dx,
211 J 4o

where the contour of integration begins and ends at +oo and encircles 1 in the positive
direction and where

(6.2) f(@) = T (1—2‘2) -

and z=4N +2a+2, @ > —1, and £ > 1. Again, we use the transformation

(6.3) f(z,t) = Fwd — b2w.
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The z-saddle points +4/1 — 1/t should correspond with +b. It follows that
(6.4) B=3 ( 2 —t— amccosh\/i) .

With transformation (6.3) we have for (6.1)

(6.5) (~1)N2ee-2t/2L(&) (zt) = 2—71;2 /L (30" =¥ b () du,
where

Y dw 1—¢(1 - 22
and L is given in Fig. 3.1. Again, using (3.2) in (6.5), we obtain

n—1

(—1)N2ae—zt/2L§\‘;‘) (2t) = Ai(22/3b2) Z(‘l)"akr’"lﬁ'
(67) k=0
n—1
— Ai'(22/3b2) Z(—l)kﬂkz-—k—z/s +én,
k=0

where €5, is as in (3.4).

To apply the analysis of §5, we locate the relevant singular points of ho(w). Let
To = 4/1 — 1/t be the positive z-saddle point when ¢ > 1. The point o is mapped
to w(zo) = b by the mapping given in (6.3), when the logarithmic function takes its
principal value. However, the points zo at other sheets of the Riemann surface of the
log function are singular points of the mapping (6.3). Then the phase of 1 — zg is, for
instance, 2r. When b = 0 the singularities w = S+ nearest to b satisfy 353 = +imi,
whereas

(6.8) Sifvb:i:w;% as b— oo.

Thus po(b) of (5.1) is of order b=1/2 as b — oo.

As before, we want to split up £ into £’ and £”, and define €y, , &5/, similar to
(5.5). So define £’ = {w € L | |lw—b| < 6b°}, where the constants § and 6 satisfy § > 0
and —1 < 6 < 1, in order that the estimate of €n| .., | is exponentially small compared
with the estimate of |e,,,| as z — co uniformly with respect to b. We choose 6 close
to —3 fixed.

Let I'g be a closed contour which encircles £’ such that

length Ty = O(b%), distance(T'g,L’) ~cb~1/2 as b— oo

and such that ho(w) is analytic on I(Tg), where I(I'p) is the closure of the interior of
T. Then straightforward calculations give that

(6.9) sup |ho(w)| < Cob®+D)e|ho(b)| as b— oo,
weI(To)
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where Cy does not depend on b. Further calculations, similar to those in §5 yield, for
n=12,...,

(6.10) sup |hn(w)] < Cab@+D@+D|ho(b)| as b — oo,
wel(Ts)

where, here and below, Cy, denotes a generic quantity that does not depend on b and
z. Notice that, in contrast to (5.3), the power of b is positive and does not depend on
n. These estimates yield

(6.11) |en),, | < Cnz=n=1/3p0-1)a+(6-3) Aj(22/3p2).
In (6.11) we used
hop) = 1552 V2

(t - 1)1/4t3/4 '
In the Appendix we prove that

(6.12) lenl o] S Chz=n=4/3e=Ne=2 o (b)| Ai(22/362),

where the positive Cy, and A do not depend on b and 2. It follows that we can assign
numbers Cy,, independent of z and b, such that

(6.13) len] < Crz=m=1/3(b + 1)@-Da+(6-3) Aj(22/3p2),

as z — oo uniformly with respect to b € [0,00). A similar approach can be used for
b€ [0,47], where 0 < 7 < ($m)1/3, 7 fixed.

We can compare this estimate with the estimate given in (7] and [19], which is of
the form (3.5). First, we notice that (6.13) is not in the form of the first neglected
terms of expansion (6.7). But with (6.10) it easily follows that the first neglected terms
can be estimated by the right-hand side of (6.13). Regardless, (6.13) clearly shows why
expansion (6.7) holds uniformly with respect to b in an unbounded domain. Secondly,
in (6.13) the influence of b is more transparent than in the right-hand side of (3.5).

7. Other uniform expansions generated by the Bleistein method. In
this section we show that the methods used for the Airy-type expansions are quite
general and can be applied to other uniform expansions of integrals of the form

(7.1) / e*f @B ho (c)dz
C

with coinciding saddle points and singularities. In this section we work out an example
of uniform expansions in terms of Bessel functions. In [7] such an expansion of the
Laguerre polynomials is given. Let

1 r0O+) L .
(72) F(z, A)= 2—7”/ w—a-—lho(w)eiz(w-—A /w)dw,
—o0

where the contour of integration begins and ends at —oc and encircles the origin in
the positive direction. We assume that ho(w) is analytic on a neighborhood of the
contour of integration, and we let z > 0, 34 > 0, and o > —1. Notice that +:iA are
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F1G. 7.1. Steepest-descent curve for integral (7.2).

the saddle points of the integral. We choose the contour of integration through these
saddle points, and the steepest-descent path looks like Fig. 7.1.
The recursion in connection with integral (7.2) is

(7.3)
2
o) =0t 22 4 (14 £ ) ulw), () = wmti L et )]

and if we integrate n times by parts, we obtain the expansion

(7.4)  F(z,4) = J"("A Z( 1)kas (Z)k J“zj!flA) Z( 146 ( ) +En,

where

2\ 1 [OH
(75) = () g [ wrethatugebee sy
and where Jo(z) and Ju+1(2) are Bessel functions of the first kind. Since zA is purely
imaginary, modified Bessel functions occur in the expansion.

The class of rational functions generated by (7.3) is recursively defined by

1
Qo(u) w, A) = m)

(7.6)

-1 a+1l d
_ 4\ o, =0,1,2,....
Qn+1(u,w1A) 1 +A2/u2 ( U + du) Q " 0

By induction with respect to n it follows that @, has an expansion of the form

n—1ln—z i
1) Quluw,A)=3 3 O (42/u) ne1,2,...,

= = (u w n+1 z—]ut+](1 + A2/u2)n+1

where the C;; do not depend on u, w, and A.

Again, we concentrate on the influence of A on the expansion (7.4), especially
when |A| is large.

If T is a simple closed contour that encircles A and w and with —iA in its exterior,
then we can prove, just as for (4.6), that

(7.8) / Qn(u,w, A)du = O(A]-™) as |A] — oo.

2mi
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As before, we want to split up £ into £’ and L£”. We assume that, for large |A|, the
distance from the singularities of ho(w) to the saddle points +iA is at least §|Al¢,
where the constants 8, 8 satisfy § > 0, —;— < 0 < 1. Consequently, we take L' =
{we L] |w-iA| < 36|A|°} and L” = L — L' such that the estimate of |e,,,| is
exponentially small compared with the estimate of |e,,|,,| as 2 — oo uniformly with
respect to A € [c,00), where ¢ > 0 fixed. In fact, we need a growth condition on
ho(w) on a prescribed neighborhood of £, which is similar to the condition mentioned
in the Appendix.

If we set Q(A) = {(v,w) € C2 | |u —iA| = 35|A)%, |w —iA| < 16|A|®}, we can
prove

(7.9) sup  |Qn(u,w, A)| < Cp|A|(1-20)n—6
(uw)€Q(A)

where C;, does not depend on A. Finally, we define

(7.10) ho = sup lho(w)|-

lwid|<(1/2)6]4]
With (7.8), (7.9), and straightforward calculations similar to those leading to (5.3),
we obtain, for n =1,2,...,

(7.11) sup |ha(w)] < CalA|(1-207hg  as  |A| — oo,
lw—iA]<(1/2)6]A)°

where C,, does not depend on A. With the aid of these estimates we obtain as the

main result of this section

(7.12) leal < Ca(|A] + 1)1-200n—aTg 2| Jo (2A))|

as z — oo uniformly with respect to ¢4 € [0, 00), where Cr, does not depend on A and
F2

In the case that 6 > 1 we can use the same analysis that leads to (7.12), but every
time 1 — 26 occurs it has to be replaced with —6.

A similar approach is possible for real values of A.

8. Strict upper bounds of the remainder. In this section we assume that
we have quantitative information on the functions hy,(w) and that we can construct
upper bounds for the remainders e, of (3.4). The simplest case is that we know
that |hn(w)| is bounded on £. If b > 0, an upper bound for €, can be easily ex-
pressed in terms of this bound and of the Airy function Ai(22/3b2). When b2 < 0
(the oscillatory case), the bound can be expressed in terms of the modulus function
[A#2(22/382) + Bi?(22/362)] /* (see also (3.6)).

When the maximal value of |hn(w)| occurs at w = wp, with wo far away from the
saddle point w = b, the upper bound obtained in this way may be quite inaccurate.
The fact is that the main contributions to the integral (3.4) come from a small neigh-
borhood of b, especially when z is large. To obtain realistic upper bounds of |e,| we
describe a different approach in which we also allow unbounded functions hn(w). We
concentrate on the case b > 0.

The contour £ can be parameterized by writing w = z + iy, 3z2 — y? = 3b2. By
using this and integrating with respect to y, the integral (3.1) can be written in the
form

2 33

e—szb [od]
8.1 En=(=1)"2z"" - / e—20(V H dy,
( ) ( ) 2 7 B n(y) y
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where
80 = (82 + 3B+ =38, H) = halo+ ) [ 4],

and
dx _ %y

&~ fhaew

When ho = 1 and n = 0 we obtain the real representation for the Airy function:

2 zie—32° oo
(8.2) Ai(23b2) = _277_—/ e—*¢W) dy.

— 00

To bound &, we assume that for fixed b the function H,(y) is majorized by
(8.3) |Hn(y)] < MpeondW), —00 < Y < 00,

where M, and o, are nonnegative numbers that may depend on b. Observe that, in
fact, only the even part of the function Hx(y) needs to be bounded in this way; when
hn(w) is a real function, the even part of H,(y) equals the imaginary part. The best
strategy is to start with M, and to define it slightly larger than |Hn(0)| = |hn(b)|
(when this quantity vanishes a minor modification is needed), say, M, = 1.25|hn(b)|.
Next we determine the smallest number o, that satisfies the upper bound in (8.3).
When |h,(w)| is bounded on £ and assumes its maximal value on £ at w = wo =
To + %Yo, one may take M, = |Hn(yo)| and o = 0. However, as mentioned previously,
when yo is not close to zero, the resulting bound may be unrealistic. When o, > 0,
the argument of the exponential function in the right-hand side of (8.3) is unbounded;
thus we accept unbounded functions |hn(w)|. Observe that far away from the origin
the estimate (8.3) may be very rough, but there the contribution to the integral (8.1)
is negligible, especially when z is large.
Using (8.3) in (8.1) (when z > 0,), we obtain with (8.2) the estimate

(84)  len] £ Muz—m(2 —0m) 3 Ai ((z - on)§b2) e~ 30%0n, z>o0n, b2>0.

The factor M,, contains the information on the parameter b; especially, it contains the
information on whether or not the expansion holds uniformly on unbounded b-domains
and has the double asymptotic property.

This bound is computable when the function hn(w),w € £ is computable. Rep-
resentation (4.2) may be helpful in computing hn(w). We expect that the bound in
(8.4) is realistic for a wide class of functions ho(w).

When the function h,(w) grows too fast with b, the number o, may be an un-
bounded function of b. In that case the bound in (8.4) loses its uniform character. For
example, when ho(w) = exp(—w?2b?) it is easily verified that the minimal value of oo
that satisfies (8.3) is oo = (2/243)b.

When b € [0,i00) a similar approach is possible by majorizing the function hn (w)
on the contour of Fig. 3.2. The analysis and the resulting bounds are slightly more
complicated. Details will not be given.

9. An example. We consider the function

(9.1) Fz,b) = — [ exhu®=pw)

! dw,
271 C w—b—1
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where b € [0,00) and L is the steepest-descent contour shown in Fig. 3.1. F(z,b) can
be written as an integral of the Airy function, that is,
o0
F(z,b) = el®+1)¢ [—eéz(b‘*l)s +273% / e+t Ai(t2~3) dt] , ¢ = zb2.
¢

In this example we have ho(w,b) = 1/(w — b —1). Thus the quantities introduced in
(5.1) and (5.2) are as follows: po(b) = 1, 8 =0, and ho = 2. It is easily verified that

-1 -1

ha(w) = (2b+1)(w—b—1)2’ =gt
b24+4b+2— (b+ Dw _ 3b+2
ha() =2 w0 =g

Further calculations show that
F(z,b) = Ai(22/302)apz=1/3 — AV (22/302)Boz—2/3 + €1

.2
©2) = Ai(22/382) (ao - 9;-) 213 — A (22/352) ( - -ﬂz—‘) 223 4 gy,
with
b+1 1
0= "%y bo="ms1
a2+l gy g PED
(9:3) R T ) I SR CTRAER
oy = g3 502 +3b+1 8 __o6024+10b+5
2= @+15 7 (2b+1)5

We can determine the numbers M,, 0, occurring in (8.3), but already for this sim-
ple example optimal values have to be computed numerically. Analytical bounds

of Im H,(y) are easily obtained, however. For example, we have (recall that z =
(1/3)y* +b2)

dz 1 b2 —(b+ 1)z
— - = >
Im Ho(y) Im[("" dy) $+iy—b—1] z[(z — b—1)2 + 322 — 3p2]’ z2b

(changing to z gives better formulas). When b > 1 we have |Im Ho(y)| < |ho(b)};
when b € [0, 1) the maximal value of [Im Ho(y)| is slightly larger than |ho(b)|. Similar
results hold for n = 1,2, where the critical b-values are b = %, b=(V7T-1)/6 =027,
respectively. It follows that in this example the remainders can be estimated in terms

of the first neglected terms of the asymptotic expansion (note that h,(b) = an +bBn):
(0.4 lea] < ()= AI(2/2), b2 3,
' le2] < [ha(B)|=-TBAI258), b3 Y=L,

These estimates may be compared with the order estimates (5.4) obtained from less
qualitative information on the functions hn(w).

Appendix. We formulate conditions on ho(w) such that the estimate of |ey,, |
is exponentially small compared with the estimate of |, | as z — oo uniformly with

respect to b. We take £, L', L, p(b), b, 6, €n,,, €n|.., and hn as in §5. Define

R(w,b,p, q,7) = rjw-aeP(3w’ b w+3t?)|
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We assume that ho(w) is an analytic function on a neighborhood Qo(b) of £, such
that for every w € £L” a disc with center w and radius R is contained in Q¢(b), where
r > 0 and p, ¢ > 0 do not depend on b and w. Note that, since w € £”, R may be
exponentially small as |w| — oco. Furthermore, we assume that there are constants
o > 0 and Cp > 0 such that

(A.1) |ho(w)| < Cohole=oGw’=b"w+36")| vy € Qy(b) UL, b € [0, 00).
Thus we allow functions ho(w) to be exponentially large as |w| — oo.

We define recursively neighborhoods Qn(b) of £” for n =0,1,2,... . Let Qp41(b)
be those w € Oy (b) such that the disc with center w and radius 2-(»+1)R is contained
in Qn(b).

Next, let w € Qn(b) and let I’ be the circle with center w and radius 2-"R. The
following two weak asymptotic estimates are simply proved with (4.5):

(A-2) 2im /r R (u, w, byumdu = O(|e~ 3 +0'w=38°))

(A.3) s:g | Rn (u,w,b)| = 0(13—((n+1)p+%)(%w3_bzw+§b3)|)
u!

as |b| — oo uniformly with respect to w € Qn(b) and m € {0,1}.
Now we can estimate hn(w) on Qn(b).

hn(w) = 5716 /r Ro(u, w, b)hn(u)du
-1 /PRl(u, w, b)hn—1(u)du — -2-% /r R1(u, w,b)(atn-1 + Bn-1)du

2mi

1 s —3w w—32
=(A.2) Z.-_i/I,Rl(u’w’b)h"‘l(u)du+h’"‘10(|€ L +b? gbsD

=(A.2) % /I‘Rn(u,'w, b)ho(u)du + (An—1+--- +ﬁo)o(|e—§w3+b’w—§b3|)
=(A3) & (5.3) 0O (e~ (PPHIFFu’ —Fut38))),

Thus with (5.3) we have proved that

(A4) |hn(w)] < Cnﬁo|e~—(np+1+a)(%w3—b2‘w+§b3)|

for all w € Q,(b) U L and b € [0, 00) U [0, %00).

For b > ¢ > 0it is not difficult to prove that £ = {/(1/3)y2 + b2+iy | |y| > 6'b¢}
for a certain positive &’ that does not depend on b. With the notation of §8 we have

—2,p3 0o
(qyn-n &S / —26) [H, (y) + Hn(~y)] dy.
€n|L/l ( 1) z 2 5/506 [ ﬂ(y) ‘n( y)] Y
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We choose z > np + 2 + o and estimate |e,,, [

eni | <(a.g) Chhoe= 37" z—n /5 : e—(z=np=1-9)¢() dy
< Chhoe=37¥ z-n /w e—(z—np-1-0)by® dy
6eb—95'2(z—-np-1—o)b”+1
260+ (z —np—1 — o)

< Cho Ai(23b2) 2"~ 68" (z—np—2-0)p™

g 2 3
< Chhoe~320" z—n

With similar estimates for b € [ic,i00) we have proved
(A.5) l€n|£,,| < Cn'ﬁo K{(z%bz)z—”—§3—5'2(z—np—2-—u)lb]2"+1,

where the constants §’ and Cr, do not depend on b and z.

Remark. For the boundary case that has been handled in §6 it is not difficult
to prove that p = o = 0, and (6.10) shows that in (A.4) ho can be replaced by
(b+1)(6+1/2)(e+1)| by (b)|, and further calculations show that in (A.5) ho can be replaced
by |ho(b)-
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